Analytic accurate formulae for eigenenergies of a strongly anharmonic oscillator and an oscillator with a double-well potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 171461
(http://iopscience.iop.org/0305-4470/17/7/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:31

Please note that terms and conditions apply.

Analytic accurate formulae for eigenenergies of a strongly anharmonic oscillator and an oscillator with a double-well potential

J Makarewicz
Institute of Chemistry, A Mickiewicz University, 60-780 Poznan, Poland

Received 13 July 1983

Abstract

Analytical formulae are presented of the first- to fifth-order renormalised perturbation theory (RPT), allowing highly accurate calculation of energy levels of a strongly anharmonic oscillator (AO) and an oscillator with a double-well potential (DWP).

1. Introduction

The anharmonic oscillator with a potential $V=\frac{1}{2} a x^{2}+b x^{2 M}(a \geqslant 0)$ has been the subject of many extensive studies. The literature provides exhaustive numerical tables and many approximate formulae of a limited range of application (Bazley and Fox 1961, Chan and Stelman 1963, Krieger et al 1967, Biswas et al 1971, 1973, Lakshmanan and Prabhakaran 1973, Hioe and Montroll 1975, Hioe et al 1976, 1978, Benerjee et al 1978, Benerjee 1978, Caswell 1979, Halliday and Suranyi 1980, Killingbeck 1981, Mathews et al 1981, 1982).

In contradiction to the case when $a \geqslant 0$, the approximate methods found almost no application in the calculation of energy levels of DWP ($a<0$), in spite of the fact that this potential is widely used in description of ring-puckering and inversion vibrations in molecules (Lister et al 1978).

Recently Caswell (1979) reported results of his calculations for AO and DWP obtained with his 20 th-order RPT applied. However, the calculations of this kind require computer aid. Killingbeck (1981) also studied this problem and proposed a direct method of calculation of the renormalised perturbation series.

In this paper we give, applying the results of our previous paper (Makarewicz 1984, hereafter referred to as I), analytical formulae allowing highly accurate calculation of energy levels of a general one-dimensional AO with the potential
$V=\sum_{k=0}^{M} \lambda^{k} V_{k} x^{2(k+1)}$
(the formal perturbation parameter λ we further take: $\lambda=1$).

We are interested in the case when $V_{k} \geqslant 0$ (then V has one minimum) and when $V_{0}<0, V_{1}>0, V_{k} \geqslant 0$ (then V has two minima).

2. Formulae for mean values of $\boldsymbol{x}^{\mathbf{2 m}}$ and energy eigenvalues

2.1. Renormalised perturbation series for the mean values of $x^{2 m}$ and energy eigenvalues It is well known that although the ao Hamiltonian

$$
\begin{equation*}
H=-\left(\hbar^{2} / 2 m\right) \mathrm{d}^{2} / \mathrm{d} x^{2}+V(x) \tag{1}
\end{equation*}
$$

includes $M+2$ parameters (m and $\left\{V_{k}\right\}_{k=0}^{M}$), the energy E depends on $M+1$ parameters, as the transformation

$$
x=\left(m \omega_{0} / \hbar\right)^{-1 / 2} r
$$

where

$$
\omega_{0}=\left(2\left|V_{0}\right| / m\right)^{1 / 2}
$$

gives the Hamiltonian:

$$
\begin{align*}
& H=\hbar \omega_{0} h\left(\left\{v_{k}\right\}\right), \\
& h\left(\left\{v_{k}\right\}\right)=-\frac{1}{2} \mathrm{~d}^{2} / \mathrm{d} r^{2}+\frac{1}{2} s r^{2}+\sum_{k=1}^{M} v_{k} r^{2(k+1)} \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
& v_{k}=\left(\hbar / m \omega_{0}\right)^{(k+1)} V_{k} / \omega_{0} \hbar, \\
& s=\operatorname{sgn} V_{0} .
\end{aligned}
$$

The energy of AO depends linearly on ω_{0}

$$
E=\hbar \omega_{0} \mathscr{E}\left(\left\{v_{k}\right\}\right)
$$

so, it is sufficient to find the eigenvalues $\mathscr{E}\left(\left\{v_{k}\right\}\right)$ depending on M parameters.
According to the perturbation theory the mean values $\left\langle r^{2 m}\right\rangle$ and eigenenergies \mathscr{E} are expanded as follows:

$$
\begin{align*}
& \left\langle r^{2 m}\right\rangle=\sum_{n} \mathscr{R}_{n}(2 m) v_{1}^{n_{1}} v_{2}^{n_{2}} \ldots v_{M}^{n_{M}} \tag{3}\\
& \mathscr{C}=\sum_{n} \mathscr{E}_{n} v_{1}^{n_{1}} v_{2}^{n_{2}} \ldots v_{M}^{n_{M}} \tag{4}
\end{align*}
$$

where

$$
n \equiv\left(n_{1} n_{2} \ldots n_{M}\right) \quad \text { and } \quad\left(n_{1} n_{2} \ldots n_{k} 0 \ldots 0\right) \equiv\left(n_{1} n_{2} \ldots n_{k}\right)
$$

For one-dimensional AO $(s=1)$ the $\mathscr{R}_{n}(2 m)$ and \mathscr{C}_{n} coefficients calculated from equations (6)-(8) of I have the polynomial forms:

$$
\begin{align*}
& \mathscr{R}_{n}(2 m)=M_{n}(2 m) \sum_{k} r_{k}(2 m ; n) \varepsilon^{k} \tag{5}\\
& \mathscr{E}_{n}=N_{n} \sum_{k} e_{k}(n) \varepsilon^{k} \tag{6}
\end{align*}
$$

where

$$
\varepsilon \equiv 2 \mathscr{C}_{0}=2 n+1
$$

The coefficients $M_{n}(2 m)$ and $r_{k}(2 m ; n)$ for the first indices n are included in table 1 .

Table 1. The $M_{n}(2 m)$ and the $r_{k}(2 m ; n)$ coefficients defining the polynomials $\mathscr{A}_{n}(2 m)=$ $M_{n}(2 m) \Sigma_{k} r_{k}(2 m ; n) \varepsilon^{k}$.

n	m	$M_{n}(2 m)$	$k=$	0	1	2	3	4	5	6
0	1	$\frac{1}{2}$			1					
	2	$\frac{3}{8}$		1		1				
	3	$\frac{5}{16}$			5		1			
	4	$\frac{35}{128}$		9		14		1		
	5	$\frac{63}{256}$			89		30		1	
	6	$\frac{231}{1024}$		225		439		55		1
1	1	$-\frac{3}{4}$		1		1				
	2	$-\frac{1}{16}$			67		17			
	3	$-\frac{15}{128}$		63		118		11		
	4	- $\frac{21}{128}$			501		210		9	
	5	$-\frac{105}{256}$		495		1126		175		4
2	1	$\frac{5}{32}$			67		17			
	2	$\frac{9}{256}$		513		1138		125		
	3	$\frac{1}{512}$			117281		59110		3129	
	4	$\frac{7}{4096}$		451001		809285		107179		1495
01	1	$-\frac{15}{16}$			5		1			
	2	$-\frac{15}{128}$		63		118		11		
	3	$-\frac{1}{256}$			19277		8290		393	
	4	$-\frac{7}{512}$		12825		29253		4835		127
3	1	$-\frac{3}{32}$		513		1138		125		
	2	$-\frac{1}{512}$			305141		178330		10689	
	3	$-\frac{1}{12288}$		23391809		8632571		48261305		230475
11	3	$\frac{3}{512}$		179550		463623		91060		2807
4	2	$\frac{15}{4096}$		971046		3105983		783020		29183
101	2	$\frac{7}{256}$		41715		108432		20395		578

The remaining coefficients needed are determined from the following relations
$\mathscr{R}_{11}(2)=-6 \mathscr{R}_{1}(6)$,
$\mathscr{R}_{4}(2)=\frac{11}{4} \mathscr{R}_{3}(4)$,
$\mathscr{R}_{02}(2)=-\frac{7}{2} \mathscr{R}_{01}(6)$,
$\mathscr{R}_{11}(4)=2 \mathscr{R}_{2}(6)$,
$\mathscr{R}_{21}(2)=-9 \mathscr{R}_{2}(6)$,
$\mathscr{R}_{02}(4)=\frac{1}{2} \mathscr{R}_{11}(6)$,
$\mathscr{R}_{001}(2)=-4 \mathscr{R}_{0}(8)$,
$\mathscr{R}_{21}(4)=3 \mathscr{R}_{3}(6)$,
$\mathscr{R}_{001}(4)=\mathscr{R}_{1}(8)$,
$\mathscr{R}_{101}(2)=-7 \mathscr{R}_{1}(8)$,
$\mathscr{R}_{0001}(2)=-5 \mathscr{R}_{0}(10)$,
$\mathscr{R}_{0001}(4)=\mathscr{R}_{\mathbf{1}}(10)$,
$\mathscr{R}_{001}(6)=\mathscr{R}_{01}(8)$.
The coefficients N_{n} and $e_{k}(n)$ are included in table 2. The above equations allow us to calculate \mathscr{E} with the accuracy of fifth-order perturbation theory. They hold only for $s=1$ and for the case when the anharmonic constants values v_{k} are sufficiently low.

Knowing the perturbation series (3) and (4), we will now construct the renormalised series which give good results also for $s=-1$ and for high values of v_{k}.

For this purpose we introduce the renormalisation parameters β_{k} and calculate the parameter ω from

$$
\begin{equation*}
\omega^{2}=s+\sum_{k=1}^{M} \beta_{k} v_{k} \omega^{-k} . \tag{7}
\end{equation*}
$$

This equation gives a positive value of ω which means that the zero-order Hamiltonian for RPT:

$$
h_{0}(\omega)=T+\frac{1}{2}(\omega r)^{2}
$$

Table 2. The N_{n} and the $e_{k}(n)$ coefficients defining the polynomials $\mathscr{E}_{n}=N_{n} \Sigma_{k} e_{k}(n) \varepsilon^{k}$.

m	N_{n}	$k=\quad 0$	1	2	3	4	5	6
0	$\frac{1}{2}$		1					
1	$\frac{3}{8}$	1		1				
2	$-\frac{1}{32}$		67		17			
01	$\frac{5}{16}$		5		1			
3	$\frac{3}{256}$	513		1138		125		
11	$-\frac{15}{128}$	63		118		11		
001	$\frac{35}{128}$	9		14		1		
4	$-\frac{1}{2048}$		305141		178330		10689	
21	$\frac{1}{512}$		117281		59110		3129	
02	$-\frac{1}{512}$		19277		8290		393	
101	$-\frac{63}{128}$		167		70		3	
0001	$\frac{63}{256}$		89		30		1	
5	$\frac{3}{4096}$	971046		3105983		783020		29183
31	$-\frac{1}{12288}$	23391809		48261305		8632571		230475
12	$\frac{3}{1024}$	179550		463623		91060		2807
201	$\frac{7}{20480}$	2020443		4162767		647857		13733
011	$-\frac{7}{512}$	12825		29253		4835		127
1001	$-\frac{105}{256}$	495		1126		175		4
00001	$\frac{231}{1024}$	225		439		55		1

which we extract from the total Hamiltonian

$$
h=T+\frac{1}{2} s r^{2}+\sum_{k=1}^{M} v_{k} r^{2(k+1)}=h_{0}+\frac{1}{2}\left(s-\omega^{2}\right) r^{2}+\sum_{k=1}^{M} v_{k} r^{2(k+1)}
$$

has bound states (in contrast to the ordinary zero-order Hamiltonian $h_{0}(s)$ for which bound states do not exist if $s=-1$). So, the RPT allows us to calculate eigenenergies also for $s=-1$ (DWP). The renormalised perturbation series for $\left\langle r^{2 m}\right\rangle$ and \mathscr{E} in terms of $w_{k} \equiv v_{k} \omega^{-k}$ are of the forms

$$
\begin{align*}
& \left\langle r^{2 m}\right\rangle=\omega^{-m} \sum_{n} \mathscr{R}_{n}^{\prime} w_{1}^{n_{1}} w_{2}^{n_{2}} \ldots w_{M}^{n_{M}}, \tag{8}\\
& \mathscr{E}=\omega \sum_{n} \mathscr{C}_{n}^{\prime} w_{1}^{n_{1}} w_{2}^{n_{2}} \ldots w_{M}^{n_{M}}, \tag{9}
\end{align*}
$$

where the new coefficients $\mathscr{R}_{n}^{\prime} \equiv \mathscr{R}_{n}^{\prime}(2 m)$ and \mathscr{E}_{n}^{\prime} are related to the old $\mathscr{R}_{n} \equiv \mathscr{R}_{n}(2 m)$ and \mathscr{E}_{n} by equations

$$
\begin{align*}
& \mathscr{R}_{n}^{\prime}=\sum_{K} p_{n, n^{\prime}}(m ; K) \mathscr{R}_{n^{\prime}} \beta_{1}^{k_{1}} \beta_{2}^{k_{2}} \ldots \beta_{M}^{k_{M 1}}, \tag{10}\\
& \mathscr{E}_{n}^{\prime}=\sum_{K} f_{n, n^{\prime}}(K) \mathscr{C}_{n^{\prime}} \cdot \beta_{1}^{k_{1}} \beta_{2}^{k_{2}} \ldots \beta_{M}^{k_{1}}, \tag{11}
\end{align*}
$$

where

$$
K=\left(k_{1} k_{2} \ldots k_{M}\right)
$$

and indices n^{\prime} are determined by the condition

$$
\left(1 n_{1}^{\prime} 2 n_{2}^{\prime} \ldots M n_{M}^{\prime}\right)=\left(1 n_{1} 2 n_{2} \ldots M n_{M}\right)-\left(1 k_{1} 2 k_{2} \ldots M k_{M}\right)
$$

The coefficients $p_{n, n^{\prime}}(m ; K)$ are tabulated in table 3 and the $f_{n, n^{\prime}}(K)$ we obtain from

	$K=0$	1	2	01	3	11	001	4	21	101	02	0001
0	1											
1	1	$\frac{1}{2} m$										
2	1	$\frac{1}{2}(m+3)$	$\frac{1}{8} m(m+2)$									
01	1			$\frac{1}{2} m$								
3	1	$\frac{1}{2}(m+6)$	$\frac{1}{8}(m+3)(m+5)$			($m+$						
11	1	$\frac{1}{2}(m+4)$		$\frac{1}{2}(m+3)$		${ }_{4}^{1} m$						
001	1						${ }_{2}^{1} m$					
4	1	$\frac{1}{2}(m+9)$	$\frac{1}{8}(m+6)(m+8)$			+5			2)(m	+6)		
21	1	$\frac{1}{2}(m+7)$	$\frac{1}{8}(m+4)(m+6)$	$\frac{1}{2}(m+6)$		$\frac{1}{4}(m$	+5)		$\frac{1}{16} m$	($m+$		
101	1	$\frac{1}{2}(m+5)$					$\frac{1}{2}(m+3)$			$\frac{1}{4} m($		
02	1			$\frac{1}{2}(m+4)$								
0001	1											$\frac{1}{2} m$

Table 4. The $f_{n, n^{\prime}}(K)$ coefficients defining the polynomials $\mathscr{E}_{n}^{\prime}=\Sigma_{K} f_{n, n^{\prime}}(K) \mathscr{E}_{n^{\prime}} \cdot \beta_{1}^{k_{1}} \beta_{2}^{k_{2}} \ldots \boldsymbol{\beta}_{M^{M}}^{h^{\prime}}$ for $N=\boldsymbol{\Sigma}_{1}$ in $=5$.

the relation

$$
f_{n, n^{\prime}}(K)=p_{n, n^{\prime}}(-1 ; K)
$$

For $N=1 n_{1}+2 n_{2}+\ldots+M n_{M}=5$ they are included in table 4 .

2.2. Determination of the renormalisation parameters

The β_{k} constants depend on the quantum number n and the order N of RPT i.e. if the highest power at w_{k} is N_{k}, then in calculating the energies the values $\beta_{k}\left(N_{k}\right)$ are taken. We determine the $\beta_{k}\left(N_{k}\right)$ from equations

$$
\begin{equation*}
\lim _{v_{k} \rightarrow \infty}\left(v_{k}^{-1 /(k+1)} \mathscr{C}\left(\left\{v_{1}\right\}\right)\right)_{v_{1}=v_{k} \delta_{1, k}} \equiv \tilde{E}^{\left(N_{k}\right)}=E(2 k+2) \tag{12}
\end{equation*}
$$

where $E(2 k+2)$ is the energy of AO with the potential $V=x^{2 k+2}$. These equations are of the general form:

$$
\begin{equation*}
W_{N_{k}}\left(x_{k}\right) x_{k}^{-1 /(k+1)}=E(2 k+2): x_{k}=\left(\beta_{k}\left(N_{k}\right)\right)^{-1} \tag{13}
\end{equation*}
$$

where $W_{N_{k}}\left(x_{k}\right)$ are polynomials.
For $k=1$ the polynomials $W_{1}\left(x_{1}\right)$ are the following:

$$
W_{N_{1}}\left(x_{1}\right)=\sum_{n=0}^{N_{1}} A_{n} x_{1}^{n} \mathscr{E}_{n},
$$

where

$$
\begin{aligned}
& A_{0}=1-\sum_{i=1}^{N_{1}} a_{i}, \quad a_{i}=\left(i!2^{i}\right)^{-1}, \\
& A_{n}=1+\sum_{i=1}^{N_{1}-n} a_{i} \prod_{j=0}^{i-1}(3 n+2 j-1), \quad n=1,2, \ldots, N_{1} .
\end{aligned}
$$

For $k>1$ the polynomials $W_{N_{k}}\left(x_{k}\right)$ are:

$$
W_{N_{k}}\left(x_{k}\right)=\frac{1}{2} \mathscr{E}_{0}+x_{k} \underbrace{\mathscr{E}_{0 \ldots 1}}_{k},
$$

where

$$
N_{k}=1
$$

Numerical values of $\beta_{k}\left(N_{k}\right)$ for the first ten states are given in table 5. However it does not include the values of $\beta_{k}(2)$ as second-order RPT does not give more accurate results than first-order RPT.

We also do not give the values of $\beta_{k}\left(N_{k}\right)$ for $k>3$ since in order to calculate them, the values of energy levels $E_{n}(2 k+2)$ not so far reported in the literature must be known (numerical values of $E_{n}(4)$ are taken after Benerjee (1978), and $E_{n}(6)$ and $E_{n}(8)$ are taken from the paper of Krieger et al (1967)). In general, anharmonic constants v_{k} rapidly decrease with increasing k and so their renormalisation is not necessary. Let us notice that for $n \gg 1$ the values of $\beta_{k}\left(N_{k}\right)$ increase almost linearly with increasing n, which means that the expansion for the energy of RPT gives, for high states, the results of the same accuracy as the wкbu method (see paper I).

This fact is illustrated by the results of table 6 where we compare the energies of quadratic-quartic AO calculated with our fifth-order RPT with the five-term wKBJ method (Kesarwani and Varshni 1981) and those calculated numerically by Hioe and

Table 5. The values of the renormalisation parameters $\beta_{k}\left(N_{k}\right)$.

n	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$\beta_{3}^{(1)}$	$\beta_{1}^{(3)}$	$\beta_{1}^{(4)}$	$\beta_{1}^{(5)}$
0	6.000	22.5	105	10.3034	12.62837	12.779836
1	10.000	52.5	315	14.1488	16.24377	18.803042
2	13.437	112.5	861	16.6285	19.45474	20.605647
3	16.999	149.9	1635	24.4383	22.85986	25.471550
4	21.106	217.5	2423	33.6324	28.24491	31.136899
5	25.370	305.8	3847	42.4774	34.40302	33.935285
6	29.703	413.5	5885	51.0430	41.25127	38.958229
7	34.074	539.7	8626	59.4686	48.42053	44.363665
8	38.470	682.8	12172	67.8148	55.57250	50.048038
9	42.881	844.9	16630	76.1113	62.64680	55.994542
10	47.302	1025.6	22100	84.3745	69.65773	62.172898

Montroll (1975). It follows from this comparison that for high states the results obtained by our method are in very good agreement with the WKBJ results, with the accuracy to at least six significant digits. For high v_{1} and low n, RPT yields the results with the same accuracy while the wKBJ method fails.

2.3. Correcting coefficients

For some of the lowest states, equations (12) have no solutions. Then we calculate β_{k} from the equation

$$
\mathrm{d} \tilde{E}^{\left(N_{k}\right)} / \mathrm{d} \beta_{k}=0
$$

The energies of these states are charged with much greater errors than the energies of the other states. In order to reduce these errors, let us modify the equation for the energy of these states. In formula (9) we replace the $\mathscr{E}_{0}^{\prime} . .0 N_{k}$ coefficients

$$
\mathscr{E}_{0 \ldots 0 N_{k}}^{\prime}=\sum_{l=0}^{N_{k}} c_{l}^{(k)} \beta_{k}^{l} \mathscr{C}_{0 \ldots\left(N_{k}-l\right)}
$$

by the modified coefficients

$$
\tilde{\mathscr{E}}_{0 \ldots 0 N_{k}}^{\prime}=\mathscr{E}_{0 \ldots 0 N_{k}}^{\prime}+\left(a_{N_{k}}^{(k)}-1\right) c_{N_{k}}^{(k)} \beta_{k}^{N_{k}} \mathscr{E}_{0} .
$$

We have found empirically that $a_{N_{k}}^{(k)}$ of a general form

$$
a_{N_{k}}^{(k)}=A_{N_{k}}^{(k)} \exp \left(b_{N_{k}}^{(k)} / \sqrt{v_{k}}\right)
$$

gives good results for $N_{k} \leqslant 3$.
Such correcting coefficients also improve energies of the lowest states for $N_{1}=4,5$ although the $\beta_{1}(4)$ and $\beta_{1}(5)$ values are determined from equation (12). The values of the $A_{N_{k}}^{(k)}$ and $b_{N_{k}}^{(k)}$ for $N_{k} \leqslant 3(s= \pm 1)$ and for $N_{1}=4(s=1)$ are included in table 7. If $v_{k}<v_{k}^{\min }=\left(b_{N_{k}}^{(k)} / \ln A_{N_{k}}^{(k)}\right)^{2}$ we take $a_{N_{k}}^{(k)}=1$. For $N_{1}=4$ and $s=-1$ the $a_{4}^{(1)}$ have the same form as for $s=1$, but the $b_{4}^{(1)}$ coefficients are different. They are for the quantum number $n=0,1,2$ as follows:

$$
b_{4}^{(1)}(0)=-0.0002, \quad b_{4}^{(1)}(1)=-0.00015, \quad b_{4}^{(1)}(2)=-0.0007
$$

Table 6. Eigenenergies of the quadratic-quartic AO calculated with five-term wKBJ method by Kesarwani and Varshni (1981) (the first line), with our fifth-order RPT (the second line) and those calculated numerically by Hioe and Montroll (1975) (the numbers in parentheses).

v_{1}	$n=0$	1	2	4	6	8
0.01	0.507256204	1.53564828	2.59084580	4.77491312	7.04832688	9.40269231
	0.507256204	1.53564828	2.59084580	4.77491313	7.04832689	9.40269230
	(20)	(8)	(0)	(2)	(8)	(1)
0.1	0.558760543	1.76951479	3.13862403	6.22030090	9.65783999	13.3824748
	0.559146413	1.76950258	3.13862495	6.22030473	9.65784224	13.3824734
	(33)	(64)	(31)	(090)	(39 99)	(799698) \dagger
1	0.774649833	2.73974461	5.17920454	10.9635829	17.6340491	24.9949364
	0.803771782	2.73989161	5.17929402	10.9635978	17.6340542	24.9949331
	(065)	(227)	(169)	(83 1)	(492)	(457)
200	3.53933065	14.0899288	27.5498021	60.0339891	97.8913315	139.900396
	3.93093188	14.0592265	27.5514345	60.0339977	97.8913329	139.900394
	(34)	(8)	(7)	(31)	(15)	(400)
1000	6.01457421	24.0257544	47.0144834	102.516150	167.212258	239.011578
	6.69422118	23.9722059	47.0173387	102.516160	167.212259	239.011577
	(085)	(61)	(7)	(57)	(8)	(80)

[^0]Table 7. The correcting coefficients for $N_{k} \leqslant 4$.

N_{k}		$N_{1}=1$		$N_{2}=1$		$N_{3}=1$		$N_{1}=3$		$N_{1}=4$
n	A	b								
0	1.0296	-0.0055	1.0830	-0.010	1.140	-0.010	1.0042	-0.0007	0.9996	0
1	1.0187	-0.003	1.0555	-0.005	1.097	-0.004		-	0.9987	0
2		-	1.0082	0	1.032	0		-	0.9952	0.0005

For $n=3$ and $s=-1, a_{4}^{(1)}(3)=1.00025$. In the case $N_{1}=5(s= \pm 1)$ we take

$$
\begin{aligned}
& A_{5}^{(1)}(n)=1 \text { except for } n=3 \text { when } \\
& A_{5}^{(1)}(3)= \begin{cases}1.00233 & \text { for } s=+1 \\
1.00243 & \text { for } s=-1\end{cases}
\end{aligned}
$$

For $N_{1}=5$ and $s=-1$ we take:
$a_{5}^{(1)}(n)=A_{5}^{(1)}(n) \exp \left(b_{5}^{(1)} / v_{1}\right)$ except for $n=2$ when $a_{5}^{(1)}(2)=\exp \left(b_{5}^{(1)} / v_{1}^{3}\right)$. The values of $b_{5}^{(1)}$ for $s= \pm 1$ for $n=0,1, \ldots, 5$ are included in table 8 . If $v_{1}<0.01$ we take $a_{5}^{(1)}=1$.

Table 8. The values of the $b_{5}^{(1)}$ coefficients.

n	$s=+1$	$s=-1$
0	0.00008	-0.000125
1	0	0.000021
2	0.00002	0.000001
3	-0.00025	0.000145
4	0.00006	-0.00007
5	0.00004	-0.00003

2.4. The accuracy of energy formulae

The proposed method of determination of renormalisation parameters is very effective. In the first-order RPT calculated eigenenergies of the quadratic-quartic, quadraticsextic and quadratic-octic AO $(s=1)$ are charged with the errors $d=$ $\left(\left|E^{\mathrm{RPT}}-E^{\text {Exact }}\right| / E^{\text {Exact }}\right) \times 100 \%$; less than $0.06 \%, 0.2 \%, 0.6 \%$ respectively.

For the most important case of quadratic-quartic $\mathrm{AO}(s=1)$ these errors for arbitrary values of the quantum number n and anharmonic constants v_{1} are as follows (the maximum errors are given in $\%$):

$$
\begin{array}{ll}
\text { for } N_{1}=3 & d=0.005 \\
\text { for } N_{1}=4 & d=0.0007 \\
\text { for } N_{1}=5 & d=0.00005
\end{array}
$$

The errors in eigenvalues for quadratic-quartic DWP grow quickly with increasing height of the barrier $V_{\mathrm{b}}=\left(16 v_{1}\right)^{-1}$. For low barriers the accuracy of eigenenergies is rather high and equals:
for $N_{1}=3$

$$
\begin{aligned}
& d=0.005 \text { for } v_{1} \geqslant 1 \text { except for } n=0,2 \text { when } \\
& d \cong 0.01 \text { for } 10 \gtrdot v_{1} \gtrdot 1
\end{aligned}
$$

for $N_{1}=4$

$$
\begin{aligned}
& d=0.0005 \text { for } v_{1} \geqslant 1 \text { except for } n=3 \text { when } \\
& d \cong 0.001 \text { for } v_{1} \cong 100,
\end{aligned}
$$

Table 9. Eigenenergies of the quadratic-quartic $\mathrm{AO}(s=1)$ calculated with the fifth-order RPT.

v_{1}	$n=0$	$n=1$	$n=2$	$n=3$
0.005	1.0073736720810 (4)	3.036525304492	5.093939132748 (2)	$\begin{array}{r} 7.1785731815 \\ (07) \end{array}$
0.05	$\begin{array}{r} 1.065285548 \\ (09) \end{array}$	$\begin{array}{r} 3.30687199 \\ (201) \end{array}$	5.74795936 (27)	$\begin{array}{r} 8.35267758 \\ (83) \end{array}$
0.5	$\begin{array}{r} 1.392351637 \\ (42) \end{array}$	$\begin{array}{r} 4.6488117 \\ (27) \end{array}$	$\begin{array}{r} 8.65505104 \\ (4996) \end{array}$	$\begin{array}{r} 13.1568023 \\ (399) \end{array}$
5	$\begin{array}{r} 2.44917378 \\ \quad(407) \end{array}$	$\begin{array}{r} 8.5990020 \\ (35) \end{array}$	$\begin{array}{r} 16.6359204 \\ (15) \end{array}$	$\begin{array}{r} 25.806288 \\ (76) \end{array}$
50	$\begin{array}{r} 4.9994167 \\ (75) \end{array}$	$\begin{array}{r} 17.8301919 \\ (27) \end{array}$	$\begin{array}{r} 34.8739821 \\ (43) \end{array}$	$\begin{array}{r} 54.3852952 \\ (16) \end{array}$
500	10.6397877 (87)	38.08683304 (46)	74.6814018 (42)	$\begin{array}{r} 116.603161 \\ \quad(99) \end{array}$
5000	22.86160805 (87)	81.90331674 (95)	$\begin{array}{r} 160.6859126 \\ (098) \end{array}$	$\begin{array}{r} 250.95061 \\ (74) \end{array}$
v_{1}	$n=4$	$n=6$	$n=8$	$n=10$
0.005	9.2894798169 (3)	13.5867158010 (6)	17.9795105829 (37)	$\begin{array}{r} 22.462605532 \\ (42) \end{array}$
0.05	$\begin{array}{r} 11.0935944 \\ (56) \end{array}$	$\begin{array}{r} 16.9547966 \\ (47) \end{array}$	$\begin{array}{r} 23.2295510 \\ (22) \end{array}$	$\begin{array}{r} 29.8665207 \\ (52) \end{array}$
0.5	$\begin{array}{r} 18.0575581 \\ (74) \end{array}$	$\begin{array}{r} 28.835348 \\ (38) \end{array}$	$\begin{array}{r} 40.6903798 \\ (861) \end{array}$	53.449085 (102)
5	35.885167 (71)	$\begin{array}{r} 58.241307 \\ (299) \end{array}$	83.0038618 (70)	$\begin{array}{r} 109.772554 \\ (70) \end{array}$
50	$\begin{array}{r} 75.876995 \\ (7004) \end{array}$	$\begin{array}{r} 123.640702 \\ (698) \end{array}$	$\begin{array}{r} 176.6286532 \\ (60) \end{array}$	$\begin{array}{r} 233.966207 \\ \text { (25) } \end{array}$
500	162.802365 (74)	$\begin{array}{r} 265.5199536 \\ (17) \end{array}$	$\begin{array}{r} 379.5113100 \\ (12) \end{array}$	502.886368 (99)
5000	350.435888 (96)	$\begin{array}{r} 571.6477925 \\ (16) \end{array}$	$\begin{array}{r} 817.1568745 \\ (50) \end{array}$	1082.88846 (52)

for $N_{1}=5$
$d=0.0005$ for $v_{1} \geqslant 0.2$ except for $n=3$ when
$d \cong 0.001$ for $v_{1} \gg 100$.
In tables 9,10 the values of energies of quadratic-quartic AO and DWP calculated from formulae presented above are compared with the more accurate data computed for $s=1$ by Benerjee (1978) and for $s=-1, v_{1} \geqslant 1$ by Caswell (1979) and for $s=-1$, $1>v_{1} \geqslant 0.2$ by us (the calculations are performed using the numerical method of Noomerov-Cooley (Cooley 1961) with accuracy to ten significant digits). As can be seen from the data presented, the accuracy of our results (which is a few orders greater than that of Caswell (1979) and Killingbeck (1981) for the same N) increases with increasing anharmonic constant v_{1}. This fact arises from the way the renormalisation parameters were determined.

Table 10. Eigen energies of the DWP $(s=-1)$ calculated with the RPT of the fifth order.

v_{1}	$n=0$	$n=1$	$n=2$	$n=3$
0.2	$\begin{array}{r} 0.397504 \tag{4}\\ (6) \end{array}$	$\begin{equation*} 1.013473 \tag{7} \end{equation*}$	2.156669	3.484123
0.3	$\begin{array}{r} 0.404312 \\ (0) \tag{2} \end{array}$	1.220951	$\begin{array}{r} 2.5755643 \\ (37) \end{array}$	$\begin{array}{r} 4.155105 \\ (94) \end{array}$
0.5	$\begin{array}{r} 0.45382753 \\ (0) \end{array}$	$\begin{array}{r} 1.5422673 \\ (81) \end{array}$	$\begin{array}{r} 3.206948 \\ (51) \end{array}$	$\begin{array}{r} 5.144332 \\ (23) \end{array}$
1	0.5772800	2.0830520	$\begin{array}{r} 4.253568 \tag{1}\\ (71) \end{array}$	$\begin{array}{r} 6.768018 \\ (20) \end{array}$
10	1.3778160	4.9956669 (5)	9.894741	$\begin{array}{r} 15.52240 \tag{2}\\ (25) \end{array}$
100	$\begin{array}{r} 3.0701029 \\ (34) \end{array}$	$\begin{array}{r} 11.0337053 \\ (60) \end{array}$	$\begin{array}{r} 21.6946789 \\ (97) \end{array}$	$\begin{array}{r} 33.91661 \\ (75) \end{array}$
v_{1}	$n=4$	$n=6$	$n=8$	$n=10$
0.2	4.993204	8.42889 (94)	12.31446 (4)	$\begin{array}{r} 16.56950 \\ (45) \tag{0} \end{array}$
0.3	5.9343819 (20)	$\begin{array}{r} 9.961148 \\ (80) \end{array}$	14.49356 (4)	$\begin{array}{r} 19.44255 \\ (1) \end{array}$
0.5	$\begin{array}{r} 7.311198 \\ (203) \end{array}$	$\begin{array}{r} 12.189017 \\ (38) \end{array}$	$\begin{array}{r} 17.656089 \\ (74) \end{array}$	$\begin{array}{r} 23.610008 \\ (609984) \end{array}$
1	$\begin{array}{r} 9.564081 \\ (90) \end{array}$	$\begin{array}{r} 15.828823 \\ (36) \end{array}$	$\begin{array}{r} 22.824184 \\ (76) \end{array}$	$\begin{array}{r} 30.424798 \\ (84) \end{array}$
10	$\begin{array}{r} 21.736532 \\ (40) \tag{3} \end{array}$	$\begin{array}{r} 35.576346 \\ (50) \end{array}$	50.956266	$\begin{array}{r} 67.616682 \\ (0) \end{array}$
100	$\begin{array}{r} 47.392915 \tag{6}\\ (20) \end{array}$	$\begin{array}{r} 77.369059 \\ (61) \end{array}$	110.647488	146.673751

3. Conclusions

The analytical formulae for energy eigenvalues and for mean values $r^{2 m}$ of $\mathrm{AO} s= \pm 1$ derived in this work provide a high accuracy of results which is sufficient for practical purposes if the barrier of DWP $s=-1$ is not too high; for example, for fifth-order RPT
the errors in the eigenenergies of the quadratic-quartic AO are less than 0.00005% for $s=1$ and less than 0.0005% for $s=-1$ for arbitrary values of quantum number n and anharmonic constant $v_{1}, v_{1} \geqslant 0.2$ if $s=-1$. The formulae for $\left\langle r^{2 m}\right\rangle$ allow us to derive the effective rotational constants of molecules and other molecular constants depending on the mean values of vibrational coordinates.

Acknowledgment

I would like to thank Dr J Koput for performing numerical calculations of the energy levels of DWP.

References

Bazley N and Fox D 1961 Phys. Rev. 124483
Benerjee K 1978 Proc. R. Soc. A 364265
Benerjee K, Bhatnagar S P, Chounry V and Kanwal S S 1978 Proc. R. Soc. A $\mathbf{3 6 0} 575$
Biswas S N, Datta K, Saxena R P, Srivatsava P K and Varma V S 1971 Phys. Rev. D 43617
-- 1973 J. Math. Phys. 141190
Caswell W E 1979 Ann. Phys., NY 123153
Chan S I and Stelman D 1963 J. Mol. Spectrosc. 10278
Cooley J W 1961 Math. Comp. 15363
Halliday I G and Suranyi P 1980 Phys. Rev. D 211521
Hioe F T, MacMillen D and Montroll E W 1976 J. Math. Phys. 171320

- 1978 Phys. Rev. C 43305

Hioe F T and Montroll E W 1975 J. Math. Phys. 161945
Kesarwani R N and Varshni J P 1981 J. Math. Phys. 221983
Killingbeck J 1981 J. Phys. A: Math. Gen. 141005
Krieger J B, Lewis M L and Rosenzweig C 1967 J. Chem. Phys. 472942
Lakshmanan M and Prabhakaran J 1973 Lett. Nuovo Cimento 7689
Lister D G, MacDonald J N and Owen N L 1978 Internal Rotation and Inversion (London: Academic)
Makarewicz J 1984 J. Phys. A: Math. Gen. 171461
Mathews P M and Raghavan S 1982 J. Phys. A: Math. Gen. 15103
Mathews P M, Seetharaman M, Raghavan S and Bhargawa V T A 1981 Phys. Lett. A 83118

[^0]: \dagger This value as was shown by Kesarwani is inaccurate.

