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J. Phys. A: Math. Gen. 17 (1984) 1461-1472. Printed in Great Britain 

Analytic accurate formulae for eigenenergies of a strongly 
anharmonic oscillator and an oscillator with a double-well 
potential 

J Makarewicz 
Institute of Chemistry, A Mickiewicz University, 60-780 Poznan, Poland 

Received 13 July 1983 

Abstract. Analytical formulae are presented of the first- to fifth-order renormalised 
perturbation theory (RPT), allowing highly accurate calculation of energy levels of a strongly 
anharmonic oscillator (AO) and an oscillator with a double-well potential (DWP). 

1. Introduction 

The anharmonic oscillator with a potential V = tax2+ b~~~ ( a  2 0) has been the subject 
of many extensive studies. The literature provides exhaustive numerical tables and 
many approximate formulae of a limited range of application (Bazley and Fox 1961, 
Chan and Stelman 1963, Krieger et a1 1967, Biswas et a1 1971, 1973, Lakshmanan 
and Prabhakaran 1973, Hioe and Montroll 1975, Hioe et a1 1976, 1978, Benerjee et 
a1 1978, Benerjee 1978, Caswell 1979, Halliday and Suranyi 1980, Killingbeck 1981, 
Mathews et a1 1981, 1982). 

In contradiction to the case when a 3 0, the approximate methods found almost 
no application in the calculation of energy levels of DWP (a < O), in spite of the fact 
that this potential is widely used in description of ring-puckering and inversion vibra- 
tions in molecules (Lister et a1 1978). 

Recently Caswell (1979) reported results of his calculations for AO and DWP 

obtained with his 20th-order RPT applied. However, the calculations of this kind 
require computer aid. Killingbeck (1981) also studied this problem and proposed a 
direct method of calculation of the renormalised perturbation series. 

In this paper we give, applying the results of our previous paper (Makarewicz 1984, 
hereafter referred to as I), analytical formulae allowing highly accurate calculation of 
energy levels of a general one-dimensional AO with the potential 

M 

v =  AkVk~2(kt1)  (the formal perturbation parameter A 
we further take: A = 1). k=O 

We are interested in the case when V, 2 0 (then V has one minimum) and when 
V,<O, V, > 0, V, 2 0  (then V has two minima). 

0305-4470/84/071461+ 12$02.25 0 1984 The Institute of Physics 1461 
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2. Formulae for mean values of x2"' and energy eigenvalues 

2.1. Renormalisedperturbation series for the mean values of x2"' and energy eigenvalues 

It is well known that although the AO Hamiltonian 

H = - ( h 2 / 2 m )  d2/dx2+ V ( x )  ( 1 )  

includes M + 2  parameters (m and {Vk}r=0) ,  the energy E depends on M i - 1  para- 
meters, as the transformation 

x = (mwo/h)-"*r 

where 

wo=(21VoI/m)"2 

gives the Hamiltonian: 

M 

h ( { v k } )  = -$d2/dr2+isr2+ 1 vkr2(k+1) 
k = l  

where 

The energy of AO depends linearly on wo 

E = h w 0 8 ( { v k } )  

so, it is sufficient to find the eigenvalues %({U,}) depending on M parameters. 

are expanded as follows: 
According to the perturbation theory the mean values ( r2" )  and eigenenergies % 

where 

n = ( n , n 2 . .  . n M )  and ( n l n 2 . .  . n k O . .  . 0 ) = ( n l n 2 . .  . nk). 

For one-dimensional AO ( s  = 1) the 9, , (2m)  and 8, coefficients calculated from 
equations (6) - (8)  of I have the polynomial forms: 

%,,(2m) = ~ , ( 2 m )  1 r k ( 2 m ;  n)Ek ,  ( 5 )  
k 

where 

E = 2 8 " = 2 n + l .  

The coefficients M,,(2m) and r k ( 2 m ;  n )  for the first indices n are included in table 1. 
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Table 1. The Mn(2m) and the rk(2m; n) coefficients defining the polynomials %,(2m) = 
~ ~ ( 2 . m )  X I ,  rk(2m; n)~'. 

n m M,(2m) k =  0 1 2 3 4 5 6 

0 1  
2 
3 
4 
5 
6 

1 1  
2 
3 
4 
5 

2 1  
z 
3 
4 

01 1 
2 
3 
4 

3 1  
2 
3 

11 3 
4 2  
101 2 

1 I 
8 
5 
16 s 
128 
63 m 
231 
1024 
3 
4 
1 

16 
15 

128 
21 
128 
105 
256 
5 

32 
9 

256 
1 

512 

4096 
1s 
16 
15 

128 
1 

256 
7 

512 
3 

32 
1 

512 
1 

12288 
3 

512 
15 

4096 
7 

256 

- 

__ 
__ 
__ 
_- 
__ 
- 

- 

- 
- 

__ 
__ 
_- 
_- 
_- 
-- 
_- 
- 
- 
- 

1 

9 

225 
1 

63 

495 

513 

451 001 

63 

12 825 
513 

23 391 809 
179 550 
971 046 

41 715 

1 

5 

89 

67 

501 

67 

117281 

5 

19 277 

305 141 

1 

14 

439 
1 

118 

1126 

1138 

809 285 

118 

29 253 
1138 

8 632 571 
463 623 

3 105 983 
108 432 

1 

30 

17 

210 

17 

59 110 

1 

8 290 

178 330 

1 
1 

55  1 

11 
9 

175 4 

125 
3 129 

107 179 1495 

11 
393 

4 835 127 

10 689 
48 261 305 230 475 

91 060 2 807 
783 020 29 183 

20 395 578 

125 

The remaining coefficients needed are determined from the following relations 

The coefficients N, and e k ( n )  are included in table 2. The above equations allow us 
to calculate '8 with the accuracy of fifth-order perturbation theory. They hold only 
for s = 1 and for the case when the anharmonic constants values u k  are sufficiently low. 

Knowing the perturbation series (3) and (4),  we will now construct the renormalised 
series which give good results also for s = -1 and for high values of ck. 

For this purpose we introduce the renormalisation parameters P k  and calculate the 
parameter w from 

This equation gives a positive value of w which means that the zero-order Hamiltonian 
for RPT: 

h , ( w )  = T + t ( w r ) '  



1464 J Makarewicz 

Table 2. The N,, and the e k ( n )  coefficients defining the polynomials 8,, = N ,  Ik e k ( n ) E k ,  

m N" k =  0 1 2 3 4 5 6 

0 
1 
2 
01 
3 
11 
00 1 
4 
21 
02 
101 
0001 
5 
31 
12 
20 1 
011 
1001 
00001 

1 

3 
z 
s 
1 

32 
5 
16 

3 
256 
15 

128 

128 

_- 
- 

- 

__ 
r 

1 
2048 

1 
512 

1 
512 
63 
128 
U 
256 
3 

4096 
1 

12288 
3 

1024 

20480 

-_ 
- 

_- 
__  

- 
___ 
- 

__ 
-_ 

512  
105 
256 

1024 

_- 
231 

1 

513 
63 

9 

971 046 
23 391 809 

179 550 
2 020 443 

12 825 
495 
225 

1 

67 
5 

1 

1138 
118 

14 
305 141 
117 281 

19 277 
167 
89 

3 105 983 
48 261 305 

463 623 
4 162 767 

29 253 
1126 

439 

17 
1 

125 
11 

1 
178 330 10 689 

59 110 3 129 
8 290 393 

70 3 
30 1 

783 020 29 183 
8 632 571 230 475 

91 060 2 807 
647 857 13 733 

4 835 127 
175 4 

55 1 

which we extract from the total Hamiltonian 
M 'M 

h =  T+$sr2+ U k T 2 ( k + l )  = h o + i ( s - W 2 ) r 2 +  t ' k T 2 ( ' + ' )  
k = l  k = l  

has bound states (in contrast to the ordinary zero-order Hamiltonian h,(s) for which 
bound states do not exist if s = -1). So, the RPT allows us to calculate eigenenergies 
also for s = -1 (DWP). The renormalised perturbation series for ( r 2 " )  and 8 in terms 
of wk = t ' k ~ - k  are of the forms 

( r 2 " ) = W - " C 3 E : , w ; l w ; 2 . . .  w?, (8) 
n 

8 = w 8; w;l w;z . . . w"" M 5 

n 
(9) 

where the new coefficients 9; = 24; ( 2 m )  and 8; are related to the old %,, = 9?.,,(2m) 
and 8, by equations 

3 ; = z p n , ~ , ( m ;  ~ ) 3 , , . p : l p f z .  . .  p : ~ ,  (10) 
K 

where 

K = ( k , k 2  . . .  k,w) 

and indices n' are determined by the condition 

(1n;2n :!... M n ~ ) = ( l n l 2 n 2  . . . M n M ) - ( 1 k 1 2 k 2 . . .  Mk,w) .  

The coefficients pn,n,( m ;  K )  are tabulated in table 3 and the fn,n,(K) we obtain from 
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3 
0 
0 
0 

N 
0 

* e 

- 
N 

d 

c 
0 C 

w 4 

m 

- 
0 

N 

3 

0 
I1 
L 

E 

E 
-IN - 

N + 
E 
E 
v 
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N 

h 
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E 
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3 
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C 

c 
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0 

0 e 
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3 
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0 N 
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m 

Vl 

3 
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0 
C 

N 
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3 

2 

N 

d 

0 
C 

-- 
3 

m 

0 

N 

- 
0 
II 
Y 

E 
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I 

-1-f 
I 

-15 
I 

N 

m 
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the relation 

f”.,.(K) = P n . n , ( - l ;  K ) .  

Foi’ N = 1 n,  + 2n2 +. . . + MnM = 5 they are included in table 4. 

2.2. Determination of the renormalisation parameters 

The P k  constants depend on the quantum number n and the order N of RPT i.e. if 
the highest power at wk is Nk, then in calculating the energies the values P k ( N k )  are 
taken. We determine the P k ( N k )  from equations 

where E ( 2 k + 2 )  is the energy of AO with the potential V = x Z k + ’ ,  These equations 
are of the general form: 

wN, ( x k  ) x ” ( ‘ + I )  = E ( 2 k  + 2 ) :  x k  = ( P k ( N k ) ) - ’  (13) 

where W,, ( & )  are polynomials. 
For k = 1 the polynomials W , ( x , )  are the following: 

Nl 

W N 1 ( X 1 )  = c AnxYg“, 
n = O  

where 
N1 

A o = l -  c a,, 

A , = l +  c a, n ( 3 n + 2 j - l ) ,  

ai = ( i !  2 ’ ) - ’ ,  
1 = 1  

N 1 - n  1- 1 

n = 1 ,2 ,  . . . , N I  
[ = I  ]=a 

For k > 1 the polynomials W N k ( X k )  are: 

W N , , ( x k ) = i g O + x k  8 0  1 ,  
--”-- 
k 

where 
N k = 1 .  

Numerical values of P k ( N k )  for the first ten states are given in table 5 .  However it 
does not include the values of P k ( 2 )  as second-order RPT does not give more accurate 
results than first-order RPT. 

We also do not give the values of P k ( N k )  for k > 3 since in order to calculate them, 
the values of energy levels E n ( 2 k + 2 )  not so far reported in the literature must be 
known (numerical values of En(4) are taken after Benerjee (1978), and En(6)  and 
E,(8) are taken from the paper of Krieger et a1 (1967)). In general, anharmonic 
constants u k  rapidly decrease with increasing k and so their renormalisation is not 
necessary. Let us notice that for n >> 1 the values of P k ( N k )  increase almost linearly 
with increasing n, which means that the expansion for the energy of RPT gives, for 
high states, the results of the same accuracy as the WKBJ method (see paper I). 

This fact is illustrated by the results of table 6 where we compare the energies of 
quadratic-quartic AO calculated with our fifth-order RPT with the five-term WKBJ 

method (Kesarwani and Varshni 1981) and those calculated numerically by Hioe and 
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Table 5. The values of the renormalisation parameters Pk(Nk). 

n P‘,” PI” Pi’’ Pi” P ‘p’ P Y1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6.000 
10.000 
13.437 
16.999 
21.106 
25.370 
29.703 
34.074 
38.470 
42.881 
47.302 

22.5 
52.5 

112.5 
149.9 
217.5 
305.8 
413.5 
539.7 
682.8 
844.9 

1025.6 

105 
315 
861 

1635 
2 423 
3 847 
5 885 
8 626 

12 172 
16 630 
22 100 

10.3034 
14.1488 
16.6285 
24.4383 
33.6324 
42.4774 
51.0430 
59.4686 
67.8148 
76.1113 
84.3745 

12.628 37 
16.243 77 
19.454 74 
22.859 86 
28.244 91 
34.403 02 
41.251 27 
48.420 53 
55.572 50 
62.646 80 
69.657 73 

12.779 836 
18.803 042 
20.605 647 
25.471 550 
31.136 899 
33.935 285 
38.958 229 
44.363 665 
50.048 038 
55.994 542 
62.172 898 

Montroll (1975). It follows from this comparison that for high states the results 
obtained by our method are in very good agreement with the WKBJ results, with the 
accuracy to at least six significant digits. For high u1 and low n, RPT yields the results 
with the same accuracy while the WKBJ method fails. 

2.3. Correcting coeficients 

For some of the lowest states, equations (12) have no solutions. Then we calculate 
P k  from the equation 

d i (Nk) /dPk = 0. 

The energies of these states are charged with much greater errors than the energies 
of the other states. In order to reduce these errors, let us modify the equation for the 
energy of these states. In formula (9) we replace the Sb O N k  coefficients 

N4 

gb ONk = c c!k’PLgO O ( N 1 - l )  
f = O  

by the modified coefficients 

@; ONk = gh ONk +(a$: -1)c!$:$p8O, 

We have found empirically that ac i  of a general form 

gives good results for Nk s 3. 
Such correcting coefficients also improve energies of the lowest states for N, = 4 ,5  

although the P1(4) and p, ( .5 )  values are determined from equation (12). The values 
of the AC: and b$i for Nk 3 ( s  = *l) and for NI = 4 ( s  = 1) are included in table 
7. If u k  < U?’” = (b$L/ln A!$:)’ we take a!$: = 1. For N I  = 4  and s = -1 the a y )  have 
the same form as for s = 1, but the bk” Coefficients are different. They are for the 
quantum number n = 0 , 1 , 2  as follows: 

b:”(O) = -0.0002, by’  ( 1) = -0.0001 5, by)  (2)  = -0.0007. 
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For n = 3 a n d  s=-1 ,  ay) (3)=1.00025.  In t h e c a s e N l = 5  ( s=* l )  we take 

A\')( n )  = 1 except for n = 3 when 

1.002 33 for s = +1, 
A$"(3)={ 1.002 43 for s = -1. 

For NI = 5 and s = -1 we take: 

a$')( n )  = Ay)(  n )  exp( b\"/ u l )  except for n = 2 when ai"(2) = exp(b:"/ U;). The values 
of b$') for s = + 1  for n = 0 ,1 , .  . . , 5  are included in table 8. If u1 < 0.01 we take a y )  = 1. 

Table 8. The values of the b;'' coefficients. 

n s = + l  s = - 1  

0 0.000 08 -0.000 125 
1 0 0.000 021 
2 0.000 02 0.000 001 
3 -0.000 25 0.000 145 
4 0.000 06 -0.000 07 
5 0.000 04 -0.000 03 

2.4. The accuracy of energy formulae 

The proposed method of determination of renormalisation parameters is very effective. 
In the first-order RPT calculated eigenenergies of the quadratic-quartic, quadratic- 
sextic and quadratic-octic AO (s= 1) are charged with the errors d =  
(/ERPT-EExactl/EExact) X 100%; less than 0.06%, 0.2%, 0.6% respectively. 

For the most important case of quadratic-quartic AO ( s  = 1) these errors for 
arbitrary values of the quantum number n and anharmonic constants ul  are as follows 
(the maximum errors are given in %): 

for NI = 3 

for NI = 4 

for NI = 5 

d = 0.005, 

d = 0.0007, 

d = 0.000 05. 

The errors in eigenvalues for quadratic-quartic DWP grow quickly with increasing 
height of the barrier Vb = ( l6uI)- ' .  For low barriers the accuracy of eigenenergies is 
rather high and equals: 

for N I  = 3 

d = 0.005 for u1 2 1 except for n = 0 , 2  when 

d ~ 0 . 0 1  for 1 0 3  ul 3 1,  

for NI = 4 

d = 0.0005 for u I  3 1 except for n = 3 when 

d = O o . O O 1  for u1 3 100, 
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for NI = 5 

d = 0.0005 for u1 k 0.2 except for n = 3 when 

d =0.001 for u1 3 100. 

In tables 9, 10 the values of energies of quadratic-quartic AO and DWP calculated 
from formulae presented above are compared with the more accurate data computed 
for s = 1 by Benerjee (1978) and for s = -1, u1 3 1 by Caswell (1979) and for s = -1, 
1 > u1 3 0.2 by us (the calculations are performed using the numerical method of 
Noomerov-Cooley (Cooley 1961) with accuracy to ten significant digits). As can be 
seen from the data presented, the accuracy of our results (which is a few orders greater 
than that of Caswell (1979) and Killingbeck (1981) for the same N )  increases with 
increasing anharmonic constant ul. This fact arises from the way the renormalisation 
parameters were determined. 

Table 10. Eigen energies of the DWP ( s  = - 1) calculated with the RPT of the fifth order. 

01 n = O  n = l  n = 2  n = 3  

0.2 0.397504 
(6) 

0.3 0.404312 
(0) 

0.5 0.453 827 53 

1 0.5772800 
(4) 

10 1.3778160 
(8) 

100 3.070 102 9 
(3  4) 

(0) 

1.013 473 
(1) 

1.220 951 
(2) 

1.542 267 3 
(8  1) 

2.083 052 0 
(1) 

4.995 666 9 
( 5 )  

11.033 705 3 
(6  0) 

2.156 669 
(4) 

2.575 564 3 
(3  7) 

3.206 948 

4.253 568 

9.894 741 
(2) 

21.694 678 9 
(9 7) 

(51) 

(71) 

3.484 123 
(7) 

4.155 105 
(94) 

5.144 332 
(23) 

6.768 018 
(20) 

15.522 40 
(25) 

33.916 61 
(75) 

01 n = 4  n = 6  n = 8  n = l O  

0.2 4.993 204 
(0) 

0.3 5.934 3819 
(20) 

0.5 7.311 198 
(203) 

1 9.564 081 
(90) 

10 21.736532 
(40) 

100 47.392 915 
(20) 

8.428 89 
(94) 

9.961 148 
(80) 

12.189 017 
(38) 

15.828 823 
(36) 

35.576 346 
(50 )  

77.369 059 
(61) 

12.314 46 
(4) 

14.493 56 
(4) 

17.656 089 
(74) 

22.824 184 
(76) 

50.956 266 
(3) 

110.647 488 
17) 

16.569 50 
(45) 

19.442 55 
(1) 

23.610 008 
(609 984) 

30.424 798 
(84) 

67.616 682 
(0) 

146.673 751 
(6) 

3. Conclusions 

The analytical formulae for energy eigenvalues and for mean values r2In of AO s = +1 
derived in this work provide a high accuracy of results which is sufficient for practical 
purposes if the barrier of DWP s = -1 is not too high; for example, for fifth-order RPT 
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the errors in the eigenenergies of the quadratic-quartic AO are less than 0.000 05% 
for s = 1 and less than 0.0005% for s = -1 for arbitrary values of quantum number n 
and anharmonic constant u l ,  ~ ~ 2 0 . 2  if s = - 1 .  The formulae for ( r 2 m )  allow us to 
derive the effective rotational constants of molecules and other molecular constants 
depending on the mean values of vibrational coordinates. 
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